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I. Phys. A :  Math. Gen. 24 (1991) 5477-5487. Printed in the UK 

Symmetries of the three-body problem 

The0 van Bemmelen 
University of Twente, Department of Applied Mathematics, PO Box 217, 7500 AE 
Enschede. The Netherlands 

Received 14 January 1991, in find form 12 June 1991 

Abstract. The symmetries of 8 three-body problem, e.g. repmsenting a model 
of three quarlu. are dete-nod. The relevant definitions and theorems concernins 
symmetries, like the symmetry condition, are listed. The software that helps solve 
the symmetry condition hy computer is discusFed. 

1. Introduction 

In an extremely simplified version of QCD it  is assumed that the gluon field holding the 
three quarks in a proton together can be approximated by the action of three strings in 
the way shown in figure 1. The energy of the gluon field is chosen to be proportional 
to the length of the string and the midpoint t is defined by the requirement that 
u1 + u2 + u3 be a minimum. 

I" 

Figure 1. Three strings holding three quarks together 

The plane in which the motion takes place is regarded as a part of R2 and we 

denote the point vi by the vector (i:). The Lagrangian associated to this problem 

is given by [l] 

L = fm(lrl12 + li212 + li31z) - 3mkR (1.1) 

(1.2) 

(1.3) 
(1.4) 
(1.5) 
(1.6) 

where 
3 

1 R = 4 min 

m = the mass of each particle 

k = a coupling constant 

ri = the position of particle i 
ui = the distance between ri and t . 

Iri - SI  = 3(u1 + u2 + u3) 
i= l  

(i = 1,2,3) 

03054470/9I/23S477+ 11$03.50 0 1991 IOP Publishing Ltd 5411 
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We assume each of the angles of the triangle with points r l ,  r ,  and T ,  to be less 
than 120'. This assumption results, as Torricelli has already proved, in angles of 120° 
between the strings ri - t ,  i = 1,2 ,3 .  

In this paper the symmetries of this three-body problem are determined. The 
power of the computer for the study of symmetries and related problems is demon- 
strated. Symmetries are important for obtaining information regarding the solutions 
of a system of (partial) differential equations. An algorithm to determine symmetries 

are done by using the software developed by Kersten (31 and Gragert [4]. In the second 
section we describe the relevant aspects for obtaining symmetries of a system of dif- 
ferential equations. The algebraic point of view of a differential equation is explained, 
and the notion of a symmetry is defined and the symmetry condition is given. The 
third section is devoted to a short description of the software used to derive and to 
solve the linear first order syst,em of different,ial eqnat,ions t,hat, resn!t,s from t,h~e sym- 
metry condition. In the final section we compute symmetries of the Euler-Lagrange 
equations derived from the variational problem (1.1). 

of 5 differ.=ti.! en,?ll_tion is gi..D. hg O!ver [2]. A!! comp.?&ions E& in this nrnor r-r-. 

2. The s y m m e t r y  condition 

Lie was the first to discover the importance of symmetries in differential equations. 
Appropriate references can be found in [2]. 

Several authors (e. g. Ibragimov [5], Olver [2], Ovsiaunikov [6] and Vinogradov 
[7]) discussed the various aspects of symmetries of differential equations. Here we 
will follow Olver's work (Applications of Z i e  groups t o  Diflerenlial Equations) and 
all references in this section are, unless stated otherwise, with respect to this work. 
We consider an nth order system of differential equations A involving p independent 
variables x = (d,. . . , xp) and p dependent variables U = ( u l , ,  , . ,U".  Multi-indices 
I = (i,,. . . , ip) ,  1I1 = i ,  + . . . + i,, enable a compact notation for the derivatives 
of U .  The variable U{ corresponds to the derivative of U' with respect to x;  e.g. 

ubol = U!" . 
The space J k  given by { ( x , ~ , ) ~ ~ ~ ~ ~ }  is called the kth order jet space. Formally, 

we also have the inifinite jet  space Jm that contains all derivatives of U. Functions of 
Jm are functions defined of some J k  with k finite, i.e. they depend on a finite number 
of variables. The nth order system A can be seen as an algebraic equation F = 0 on 
the nth order jet space J " ,  where F is defined on J " .  

Ezample. 

( u ? ~ , ~ , ~ )  = a3u2/ax ,ax~)  and ( ~ 5 ~  , I ,  ,, = a5u5/ax;ax,ax4), 01 U& = u? , ,~ , , , )  and 
.> if no confusion is possible. 

( . a l , " > L l  

The Euler-Lagrange equations of (1.1) are given by 

ii = - 3 k ( a ~ / a ~ ~ )  iji = -3qan/ay i )  i = i , z , 3  (2.1) 

where R, given by (1.2), is a function of zl, yl, I , ,  y,, z3 and y3, This is a second- 
order system of differential equations that involves one independent variable 2' = t 
and six dependent variables u1 = x l ,  nz = yl, u3 = z,, u4 = y,, us = 2, and u6 = y,. 
The differential equations (2.1) can be seen as a system of algebraic equations on the 
second order jet space 

(2.2) 6 1  6 2  6 J z  = { ( x l , u l , .  . . , U  , U , , .  . . , u l ,  q,. . . , u z ) } .  
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The algebraic equations are given by 

BR 
U1 

u ; + 3 k 3 - 7 = 0  j = l ,  . . . ,  6 

where R is a function of U', , . . , u6 

Here we are interested in continuous groups of point symmetries of the system 
A. These are one-parameter groups of transformations, i.e. flows, on J o  such that 
solutions are transformed t o  solutions of A (p 96, Def 2.23). Functions are transformed 
by the transformation of their graphs in Jo. A flow on Jo induces a flow on J k  such 
that the derivatives of the function U = f(z) are transformed into the derivatives of the 
transformed function, The induced flow on Jk is called the kth order prolongation of 
the fiow on Jo. A fiow on j 0  is a symmetry oi A if and oniy i i  it ieaves the diiierentiai 
equation invariant (p 103). 

For the concept of a symmetry the correspondence between a flow and a vector 
field is important. A vector field can be seen as the infinitesimal generator of a flow 
and integration of the vector field gives back the flow. The general expression for a 
vector field on Jo is given by 

(2.4) 

where E' and @ are functions defined on Jo. 
TL- __-I  &:-- -c" ..-_I-_ C A 2  -- r O  A -  ~ . . - - I - _  c-12 -- rk :- -: L.. IL- lllr y L u L " " ~ ' L Y ' u "  U, m "CLbY'  11c.u U,' 4 liu d. Y t . L b U T  ,IC.," U,, J ,> & j r " ~ ' ,  "y b,,C 

infinitesimal version of the prolongation of the associated flow. In order to describe 
this prolongation of the vector field the formal total derivatives on Jm are introduced. 
The formal total derivative with respect to I"' is given by 

(2 .5 )  

where the multi-index I ,  m in U:,, is given by ( i l , .  . . , i, + 1,. . . , ip). There is no 
convergence problem in taking the infinite sum over I in 'D,, since 'Dm acts only on 
functions defined on some finite order jet  space. We also define VI to be ('Dl)il 0 . .  . o 
fn \ i n  ... ha.., fn \i = In 1j-l en  
\Up/  ~ 1 ..a>.-.- \",/ \ - m /  m '  

Theorem ( p  113, Th 2.96). Prolongation of vector fields. 
The kth order prolongation of v (2.4) is given by 

where ei is the multi-index with 1 as its ith index and the other indices are 0. A vector 
field on Jo is called an infinitesimal symmetry if its corresponding flow is a symmetry. 
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Theorem (p 106-7, Th 2.31). 

given by P = 0 if and only if 

Symmetry condition. 
A vector field U on J Q  is an infinitesimal symmetry of the nth order system A 

pr"u(F) = 0 whenever F = 0.  (2.7) 
This theorem states that the symmetry condition results in a system of linear differ- 
ential equations for the coefficients of the vector field u, i.e. and & in (2.4). This 
system (2.7) is, besides linear, also overdetermined, because the unknown functions 9 
and 4 depend only on J' ,  whereas the system depends on U, with 1 6 111 6 n. From 
now on, we make no distinction between infinitesimal symmetries and their associated 
symmetries. This identification is permitted by the unambiguous connection between 
vector fiekds and flows. 

The symmetries of A generate a Lie algebra, with the usual Lie bracket for vector 
fields. Symmetries of the Euler-Lagrange equations can give rise to conservation laws. 
The correspondence is established by the variational symmetries of the variational 
problem. 

a flow, is called a variational 
symmetry of a variational problem given by the lagrangian L ,  if the quantity 

A one-parameter group of transformations, i.e. 

NI = L(z , f (z ) )dz  (2.8) 
X 

does not change by transformation of the function and the area of integration. 

Theorem (p 257, Th 4.12). 
only if 

A vector field is a variational symmetry of (2.8) if and 

D 

pr"v(L) + L - p i t i  = 0. 
. .  
1=1 

Variational symmetries are symmetries of the Euler-Lagrange equations (p 259, T h  
4.14), but  the converse is not true. 

It was Noether who established the one-to-one correspondence between variational 
symmetries of a variational problem and conservation laws of its Euler-Lagrange equa- 
tions (p 278, T h  4.29). In  case the Lagrangian is defined on J' the conservation law 
currespunoing CO LIE varia~~ui ia i  syrrirrie~ry (A.', LS given uy (p LIZ, bururrary *.a", ~ ~ 3 : ~ ~ -  I. : . L : . - - l  -~.-.--.A... I" 1, :. L.. I -  "7" "--.I1 .... 1 on\  

8L when E ( L )  = 0 .  (2.10) 
P 

A natural generalization of the notion of point symmetries is established by the no- 
tion of the so-called generalized symmetries, also known as higher order symmetries. 
Generalized symmetries arise by allowing the infinitesimal generator of the flow, i.e. 
the coefficients of the vector field (2.4), to  depend also on derivatives of the dependent 
variables. According to Olver, it appears that for non-linear equations an infinite 
series of generalized symmetries is related to complete integrability. Vinogradov 17) 
has set up the theory of coverings in which the notion of non-local symmetries, an 
extension of the notion of generalized symmetry, is aesthetically justified. Here we 
will determine the point symmetries of the Euler-Lagrange equations (2.1). We have 
shown that  point symmetries arise as the solution of an overdetermined linear system 
of differential equations, which enable a computer algebraic approach. In the next 
section we will show how to use the computer to derive and to solve the symmetry 
condition. 
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3. Software 

In the previous section we have seen that  the symmetry condition is an overdetermined 
linear system of differential equations, reflecting the prolongation of a vector field 
and the invariance of the differential equation by the action of the prolonged vector 
field. The computations involved are quite mechanical, and therefore well suited to  
be performed by a computer using symbolic algebra. 

[3], for that  is what we will use in the next section to determine the symmetries of 
the Euler-Lagrange equations (2.1). Kersten uses the differential geometry package 
in REDUCE developed by Gragert [4], which enables computations with vector fields, 
differential forms, wedge products and Lie derivatives. Other symbolic manipulation 
programs that  enable symmetry computations have been developed by Champagne 

Kersten [3] approaches the symmetry condition from the differential form side, 
as do Harrison and Estabrook [lo]. We shall not go into the aspects that are raised 
by their method and only remark that the result, i.e. the symmetry condition, is 
the same. We describe the overdetermined linear system that is constructed by the 
computer and the methods that are essential t o  solve this system and which have 
therefore been implemented in the program. 

Consider the nth order differential equation A corresponding to F = 0, where F is 
defined on J".  The overdetermined linear system is represented by a set of differential 
equations for the coefficients of a vector field U" on J" 

Un-n vx.0 . A 1  nvnlr:n +ha --Fi ..,I_" f-- L..,--et-.. .--r..t.lt:-no - - A -  h., UnrQtan 
..C ..*.I C n p L o B l L  lllr O v I u w o I c  L Y I  D J " L " L C 1 L J  L""LpY1"1L". .Y  . I L O L Y C  U, I.~.""I.. 

imd winten?itz [S] z9d SChKEZ [9]. 

The set of differential equations is given by equations the solution of which arrange 
v" to  be prolonged, i.e. U" = pr"v for some vector field v on J o ,  

and equations, the solution of which implies the action of U" on F to  vanish 

(3.3) 

Once F = 0 has been solved with respect to highest order variable(s), the equations 
(3.2) and (3.3) constitute an overdetermined linear system. The unknown functions of 
this system, <' and 4:, are implemented as being represented by functions F' ,  i > 1. 

' Ihe methods that are essentiai t o  soive the system are programmed to be checked 
one by one for their execution and if possible realised with respect to an equation in 
the overdetermined linear system. Each method will be accompanied by an example 
that originates with a system that has three variables, z, y and 2, and the dependency 
of the functions in the system is given by F' = F' (z ,y )  and FZ = F*(z ) .  

-. 
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1. If the equation is polynomial with respect to a variable, then the equation is 
broken up with respect to this variable, i.e. new equations are considered by demand- 
ing the coefficients of the polynomial to vanish. In this way the whole polynomial 
behaviour is treated. 

Example: Equation z2- + z F 2  = 0 aF' 
a y  

- 0  and F 2  = 0 Solution - - aF' 
a y  

2. If the equation is just a derivative (may be of higher order) of a function, then 
the equation is integrated, i.e. the function is specified in functions that depend on 
one less variable. 

- 0  Example: Equation - - a2F' 
axay 

Solution F' = F3 + F 4  where F 3  = F 3 ( x )  and F4 = F 4 ( y )  
3. If the equation can be solved with respect to  a function, taking into account the 

depencies, then this is executed. 

Example: 
aF2 

Equation xF' + y x  = 0 

Solution F' = -y- ax 
4. If the equation contains a term that is the product of a number and the derivative 

of a function, e.g. F' ,  with respect to variables that are not present as arguments of 
functions in the other terms of the equation then the equation is integrated. 

Example: Equation - + x F 2  = 0 
aF' 
a y  

Solution F' = -xyF2 + F3 where F3 = F 3 ( x )  

5. If the equation contains a function that depends on a variable that does not 
appear as an argument of functions in the remaining part of the equation, then an 
appropriate diffeerentiai consequence can iead to an equation which aiready has been 
treated and its solution then induces polynomial behaviour of the original equation. 

Example: Equation I -  + y F 2  = 0 
aF' 
ax 

a3F' 
Differential consequence x- = 0 

Solution F' = F3 + yF4 + F 5  where F3 = F 3 ( y )  
Solution F 4  = F 4 ( 2 )  and F 5  = F 5 ( x )  

axayz 

aF4 aF5 
a x  ax Equation xy- + I -  + y F Z  = 0 

2 L-5 
V I '  

2 G-4 
V1. Solution I-++' = 0 and x- = 0 ax ax 

These five methods and additional considerations due to the specific nature of the 
problem at hand are in many practical problems adequate to solve the overdetermined 
linear system. 
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4. Symmetries of the three-body problem 

In the first section the three-body problem that we consider has been described. I t  is 
a variational problem given by the Lagrangian (1.1) 

L = $m(l r ,  1’ + I r2 l 2  + I r3 1 2 )  - 3mkR ( 4 4  

where 

In this section we apply the software described in the previous section to  compute the 
symmetries of the associated Euler-Lagrange equations (2.1) 

Z i  = -3k(8R/azi)  and yi = -3k(BR/Oy,) i = 1 , 2 , 3 .  (4.3) 

The angles of the triangle originated by the points v i  = ( z : ) ,  i = l , 2 , 3  are assumed 

to be less than 120° (cf section 1). 

Lemma. We will show that  R (4.2) is in this case given by  

rl12+Ir212+1r312-(rl . r 2 + r 2 . r 3 + r 3 . r 1 )  
1 
3 R =  -(I 

+ &I d e t ( r l , r z )  + det(r2,r3)  + det(r3,vl)l)1’z (4.4) 

where ‘.’ denotes the inner product and det(r , ,r ,)  is the determinant z1 

Proof. 
rotation and scaling of R 

z2 

1L1 Y2 I 
Geometrical considerations imply invariance with respect to  translation and 

R(rl - - , r , - a , ~ ~ - - ) = R ( ~ ~ , r ~ , r ~ )  a E R 2  

R(M,r1,M,r2,M~r3) = R(rl,r2,r3) M,, is rotationover angle (I (4.5) 
R(hr,,hr2,hv3) = h R ( r l , r 2 . r 3 )  h > 0 

1 

Therefore it suffices to prove formula (4.4) in the case T~ = (i) , rZ = a ( i5 ) and 

r3 = b( -;$). In figure 1.1 these three points are established by transformation 

over -t,  rotatlon over -4 and scaling hy l / u l ,  for Torricelli proved the angles between 
the strings ri - t ,  i = 1,2,3,  to  be 120’. 

4 

2 .  

Fin.!!y, 

U as i t  should be. 
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The algebraic approach, as outlined in the second section, of the Euler-Lagrange 
equations (4.3) is obtained by considering t ,  zI, yl, z,, y,, z,, y,, zl, yl, i,, C,, is, 
y3, i,, y,, i,, ji,, i,, j i ,  as variables of the second order jet space J 2 .  

Symmetries of the Euler-Lagrange equations (4.3) are represented by vector fields 
on Jo = {(~,+,,Y,,z~,Y~,z~,Y~)) 

where F' ,  . . . , F7,  functions on Jo, are solutions of the symmetry condition. As we 
have seen in the previous section, the symmetry condition is given by the overdeter- 
mined linear system for the coefficients of a vector field on J 2  

, PI3 are defined on J' and F l 4 , .  , . , F" are defined on J 2 .  This system 
ro!onga?ion' equEtionc, i.e. their so!&on in = ,J,. of 

'invariance' equations, i.e. their solution results in v 2 ( F )  = 0 whenever F = 0. 
The algebraic Euler-Lagrange equation F = 0 is solved with respect to the vari- 

ables that represent second order derivatives and therefore the overdetermined linear 
system is defined on J'. 

The overdetermined linear system ([ll], appendix c) appears to have already solved 
the prolongation equations for the coefficienth F 1 4  F'$. The first, six equations of 
the overdetermined linear system express the coe ts F a , .  . . , F13 by prolongation 
in the coefficients of the vector field U, i.e. F ' and each of these first six 
equations look like 

Equ' = F," + XlF2, + X2F:2 + X3F& + YIP:, + Y2Fi2 + Y3F:3 

r- - >  

. - 1  . ? - I  -1  - zIr; - qr;,  - XlX2F:2 - i 1 i3r& 

- i l y l F ~ l  -XI&Fiz  -X1Y3Fis - F a .  (4.8) 

The subscript variables denote derivatives with respect to those variables and Equ' = 0 
defines the first equation. The remaining six equations of the overdetermined linear 
sy&m indnce the desired act,ion of the vector field u2 .  An impression of such an  
equation is given by 

Equ7 = FP + X,F:, + i2FZ2 + X3F:3 - 3kRslF;, - 3kRZ2F:* 

- 3 k R  =, F:3 + ylF:, + y2F,q + y3Ft3 - 3kRy,Ff ,  

- 3kP.  Fa - 3i-X Fa + 3kRc,E1 + 3ki iRz ,Fi ,  
Y 1  Y Z  YS Y 3  

+3kX,R,,F& + 3kX,R,,Fi3 +3kylR,,Fi,  + 3kY2R,,Fi! 
+ 3ky3R,,Fi3 + 3kR,,,,F3 + 3kR,,,8F4 + 3kR,,,,F5 

+3kR,,y2F6t3kR,,y3F7+3kR,~,,F2. (4.9) 
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Equ’ clearly shows that the formula for R has not yet been used, only the dependen- 
cies have been specified, preventing the system being prematurely big. The first six 
equations contain the exact behaviour of all the functions in the system that depend 
on i,, y1,t2, $2,2 , ,~3 ,  i.e. Fa,. . . , P I 3 ,  with respect to these variables. Once this 
behaviour IS realised, the last six equations break up with respect to these variables 
giving rise to a new system of differential equations ([ll], appendix d). 

A lot of equations in this new system are solved by the procedure of solutions, 
described in the previous section, To solve the remaining equations we are forced 
to insert the formula (4.4) for R. Though the system becomes bigger it does not 
‘explode’ and allows us to solve it. We end up with the symmetries of the Euler- 
Lagrange equations ( [ l l ] ,  appendix e). The structure of the Lie algebra generated by 
these symmetries is given in the appendix. 

The following six variational symmetries have been used by Ruijgrok [l] to solve 
the three-body problem 

a a a  
ax, a2, ax, . -+-+-  

a a a  . -+ -+-  
ay ,  a ~ ,  a ~ ,  
a 
a t  

.- 
(4.10) 

a a a 
(2YI - Yz - y3)- + (2Y2 - Y, - Y1)- + P Y ,  - Y, - y2)- 

0x1 8x2 8x3 
a a a - (22, - 2, - x )- - (22 ,  - z3 - x )- - (22, - 2, - x )- 

ay ,  ay, ay, 
a i a  i a  i a I a - - - - - - - - 4- + 4- ax] z a x ,  2 a z 3  2 ay, 2 ay, 
-&--  1 a -&-+ 1 a a i a  i a  
2 ax, 2 ax, ay, 2aY,  2aY, 

Acknowledgments 
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Appendix 

The structure of the Lie algebra of symmetries is more clear if we use the trausforma- 
tion introduced by Ruijgrok [l] 

2 = i(rl + T2 + T,) 

c = 5(r1 + M r ,  + MZT,) (AI) 
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where M is the rotation over 120'. 2 is the centre of mass, 4 is drawn in figure 1.1 
and R is the same as given by formula (1.2). 

The transformed Lie algebra of symmetries is generated by the following symme- 
tries 

s, =a, s2 = tat + 2~a, s3 = acv s, = tacv 

s, = cyacv s, = c,acv s, = z,ac, s, = z,acv 
s9 = a, '10 = taC= SI, = C y % =  S I 2  = c,a, 

= 'yaC= = ' zaCV '15 = a.%'v = taZv 

= 'yaZV = ccaZy '19 = ' y a Z ,  '20 = ' z a Z V  

s,, = at s22 = a, '23 = taZ= s24 = zcaZ= 

s25 = 'yaZ. '26 = ' z a Z Z  s2, = zya2= 

We will denote the commutator between Si and S, by [ i , j ] .  The non-zero com- 
mutator relations are 

12,41= s, [2, lo] = SI0 [2,161 = SI6 [2,21] = -s21 
[2,231 = S23 

[3,51 = s3 [3,11] = Sg [3,171= s,, [3,251= s 2 2  

[4,51 = s, 14,111 = [4> 171 = SI,  {4,21] = -s3 
[4,251= s23 
[5,6] = -S e [5,7] = -5'7 [5,8] -Sa [53 111 = SI, 
[5,17] = SI, 
[6,9] = -S3 [6,10] = -S4 [6,11] = S12 - S5 [6,12] = -S6 

[6,13] = -S, (6,141 = -S8 [6,17I = SI, [6,251= 5'2.5 

(7,111 = SI, (7,151 = -S3 [7,16] = -S4 [7,17] = SI, - S, 

[7,18] = -S6 [7,19] = -S, [7,20] = -s, 17,251 = sz, 
[a, 111 = SI, [a, 171 = S,, [E, 221 = 4, [8,23] = -S, 
[ E ,  241 = -Sa [8,27] = -S7 

[5,25] = S,, 

[a, 251 = S2, - S5 [a, 261 = -5'6 

[9,12] = s, [9,181 = Si, [9,261 = $22 

(11,121 =SI, (11, la] = S,, 111,261 = s,, 
[lo, 121 = SI, [lo, 181 = SI, [10,21] = -Sg [l0,26] = S23 

[12,13] = -S13 [12,14] = -SI4 [12,18] = SI, [12,26] = S,, 

[13,19] = -S13 [13,20] = -S14 [13,26] = S2; 
[13,15] = -Sg [U, 161 = -SIQ [13,17] = -SI] [13,18] = SI, - SI2 

[14,18] = S,, [14,22] = -Sg [14,23] = -s10 [14,24] = -si4 

[14,25] = -Sll [14,26] = S,, - S12 (14,271 = -SI3 
(15,191 = SI, 
[16,19] =SI, [16,21] = -SI, (16,271 = S2, 

[17,19] = SI, 
[18,19] = SI, 

[15,27] = S,, 

[17,27] = S2, 
[18,27] = S,, 
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(19,201 = -S,, 
[20,22] = -si5 
[20,26] = -S18 
[21,23] = S,, 
[22,24] = S,, 
[23,24] = S,, 
[24,25] -Sz6 

[19,27] = S,, 
[20,23] = -S16 
[20,27] = Sz4 - Si, 

[24,26] = -S26 

[20, 241 = -S20 [20,25] = -S17 

[24,27] = -SZ7 

The radical of this Lie algebra is generated by  S,, S,, S,, S,, S,, S1o, SI?, si,, 
S,,, S,,, S,, and S, + S,, + Si, + SZ4. The resulting quotient algebra is classified as 
A,, i.e. the Lie algebra of SL(4). 
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